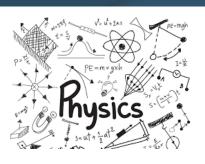
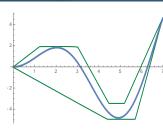
What Google knows about ML languages that you may not

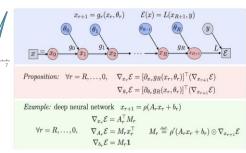
(Spoiler: only Swift and Julia make the cut)

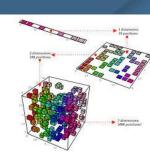
Alan Edelman (MIT & JC)
Viral Shah (Julia Computing)
Juan Pablo Vielma (MIT)
Chris Rackauckas (UC Irvine)

Software Toolchain









Multiphysics (PDEs)

Optimization

Adjoint Methods (Backprop/Autodiff)

Machine Learning

Surrogate Models

Dim Reduction

Composability

plays nicely with others

Sensitivity Analysis
Confidence Intervals

The Power of Sensitivity

Performance Nimble/Agile

Uncertainty Scalable Quantification

Modern Software Development



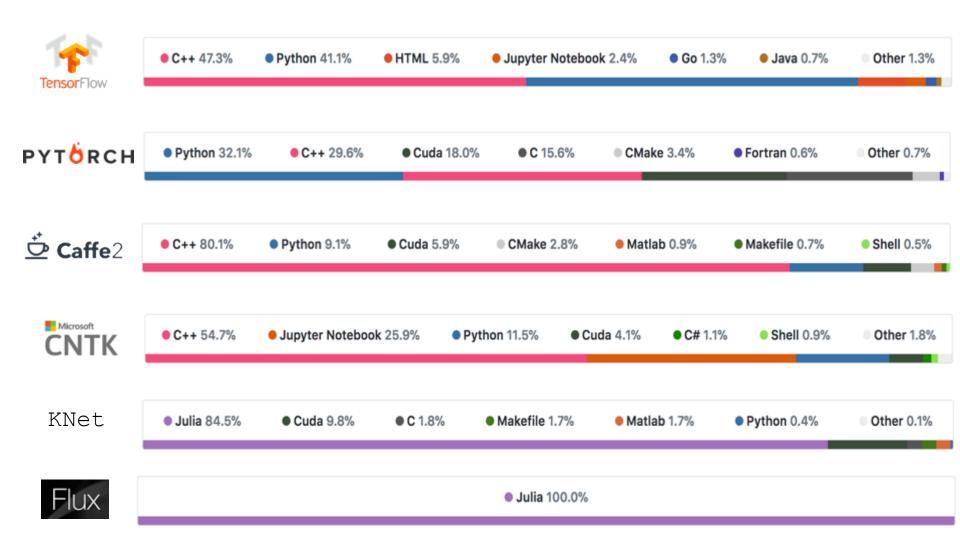
https://github.com/tensorflow/swift/blob/master/docs/WhySwiftForTensorFlow.md

1. Filter on Technical Merits

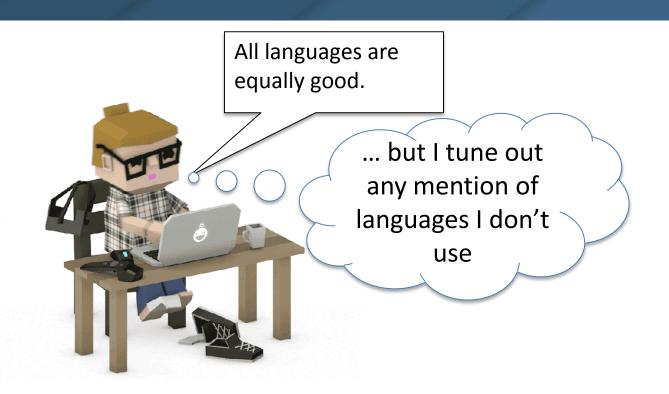
- 2. Filter on Usability
- 1. Filter on Technical Merits

Julia: Julia is ... currently investing in machine learning techniques, and even have good interoperability with Python APIs. **The Julia community shares many common values...**

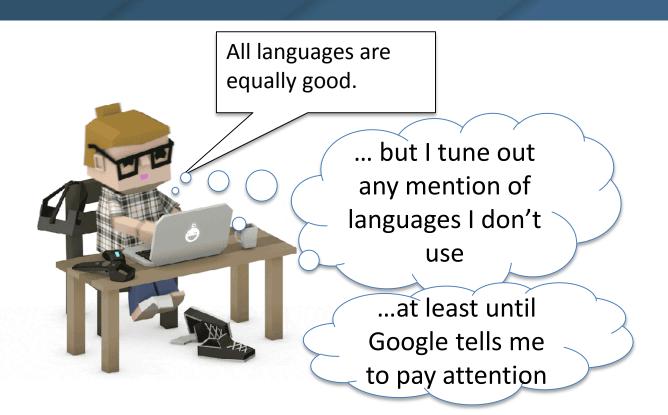
- 2. Filter on Usability
- 1. Filter on Technical Merits



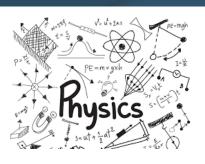
Psychology of Programming Languages

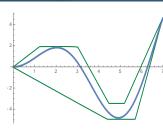


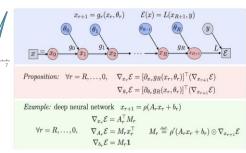
Psychology of Programming Languages

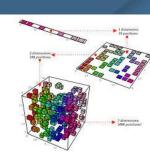


Software Toolchain









Multiphysics (PDEs)

Optimization

Adjoint Methods (Backprop/Autodiff)

Machine Learning

Surrogate Models

Dim Reduction

Composability

plays nicely with others

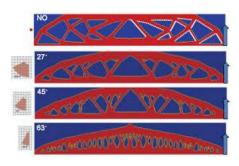
Sensitivity Analysis
Confidence Intervals

The Power of Sensitivity

Performance Nimble/Agile

Uncertainty Scalable Quantification

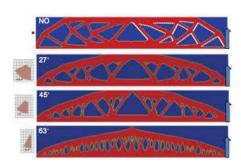
Topology Optimization ---- 20 years ago what we did



Write Force Balance Law \rightarrow Finite Elements \rightarrow Linear System \rightarrow Solve \rightarrow Graph

Dense Matrices

Now!



Fancy Differential Equations → Dimensionality Reduction →

Write Force Balance Law \rightarrow Finite Elements \rightarrow Linear System \rightarrow Solve \rightarrow Graph

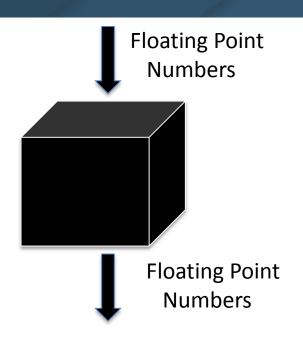
Topology Optimization

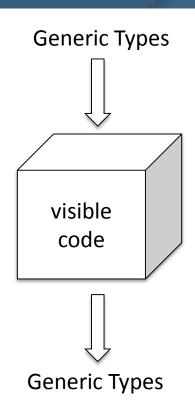
Dense Matrices

Sparse Matrices

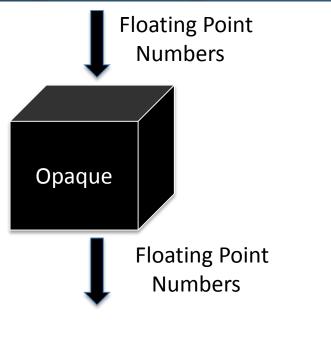
Compose many physical systems

Black Boxes vs White Boxes



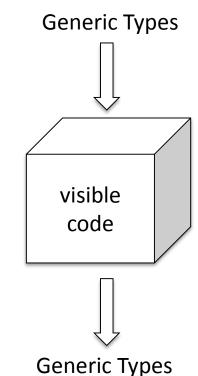


Black Boxes vs White Boxes



© Legacy Code

© Can't hit all the criteria



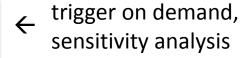
Code must rewrite other code

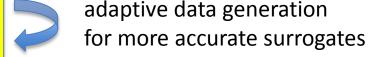
An Idealized Modern Toolchain for Energy (we can have this!)

Today (Fragmented) floats in PDEs, PDMPs, ... True Physical Equations floats out Neural Network, ... floats in Surrogate Model floats out floats in

Optimization

What could be with high level tools & generic types





← needs programmable form

specialized machine learning models for efficient optimization

optimal solutions with uncertainty estimates

RETROFITTING YOUR MANUFACTURED HOME FOR ENERGY EFFICIENCY

- Install energy-efficient windows and doors
- Replace insulation in the belly
- Make general repairs (seal bottom board, caulk windows, doors, ducts, etc.)
- Add insulation to your walls
- Install or seal belly wrap
- 💰 Add insulation to your roof or install a roof cap

Original artwork provided by Touchstone Energy® Cooperatives

Retrofitting your software for machine learning, sensitivity analysis, scalability, optimization

Install energy-efficient windows and doors

We would love to work with each and every one of you

Add insulation to your walls

Add insulation to your roof or install a roof cap

Install or seal belly wrap

ML models are really programs

- Support hardware accelerators (GPUs, TPUs, Nervana, New silicon)
- Parallelization (Multi-threading, Multi-GPU, Distributed)
- Optimization (Placement, Memory Use, Low overhead)
- Automatic Differentiation
- Ease of programming (Math notation, Debuggers, Libraries)
- Ease of deployment (Cloud, Phones, Embedded)

ML problems are really language problems

New models have new demands

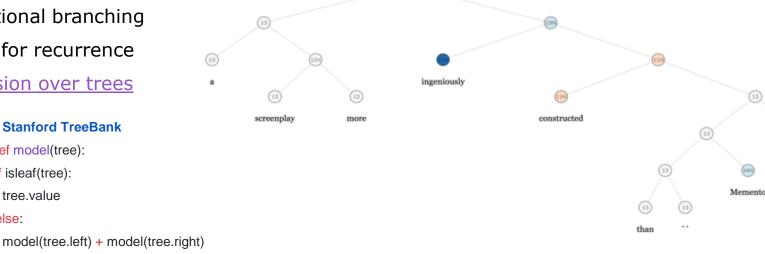
Models commonly need:

- Conditional branching
- Loops for recurrence
- Recursion over trees

else:

Stanford TreeBank

def model(tree): if isleaf(tree): tree.value



In areas such as <u>probabilistic programming</u>

- Models need to reason about *other* programs (e.g. <u>program generators</u> and <u>interpreters</u>)
- Include non-differentiable components like Monte Carlo Tree Search.

TensorFlow is more like a language and less like a library

We build a "computational graph" (essentially an AST)

```
a = tf.constant(3.0, dtype=tf.float32)
b = tf.constant(4.0) # also tf.float32 implicitly
total = a + b
print(a)
print(b)
print(total)
Add
const3
const4
```

Which may contain control flow (tf.if, tf.while), variable scoping

```
def my_image_filter(input_images):
    with tf.variable_scope("conv1"):
        # Variables created here will be named "conv1/weights", "conv1/biases".
        relu1 = conv_relu(input_images, [5, 5, 32, 32], [32])
    with tf.variable_scope("conv2"):
        # Variables created here will be named "conv2/weights", "conv2/biases".
        return conv_relu(relu1, [5, 5, 32, 32], [32])
```

Lazy (Eval) programming in JS

```
function add(a,b) {
    return `${a}+${b}`;
}

x = 1; y = 2
z = add('x', 'y') // 'x+y'
eval(z) // 3
x = 4
eval(z) // 6
```

Cannot reuse existing libraries. Need new libraries for I/O and data processing.

Abadi, M., Isard, M., Murray, D., A Computational Model for TensorFlow: An Introduction, 2018.

Mixed Integer Optimization and Julia

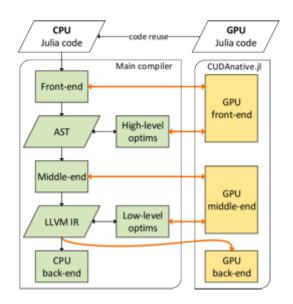
- Mixed Integer Optimization
 - Discrete + nonlinear
 - Theoretically hard
 - Routinely solved in practice

http://www.gurobi.com/company/example-customers

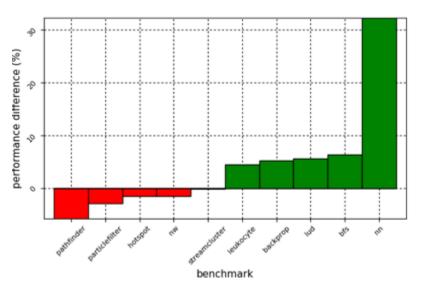
- Optimization modelling language and interphase
- Easy to use and advanced
- Integrated into Julia

GPU computing in Julia

Native Array Libraries - CuArrays.jl, GPUArrays.jl, CLArrays.jl



CUDAnative.jl: 1,300 LOC



Performance difference between CUDA C++ and CUDAnative.jl implementations of several benchmarks from the Rodinia benchmark suite.

Julia ML at PetaScale to catalog the visible universe

650,000 cores. 1.3M threads. 60 TB of data.

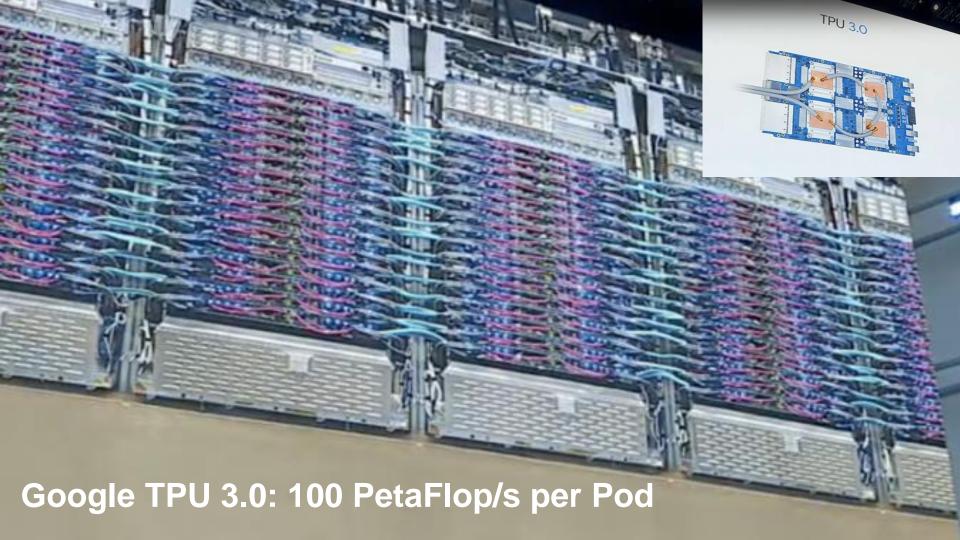
Most light sources are near the detection limit.

Cataloging the Visible Universe through Bayesian Inference at Petascale

Jeffrey Regier*, Kiran Pamnany†, Keno Fischer‡, Andreas Noack§, Maximilian Lam*, Jarrett Revels§, Steve Howard Ryan Giordano David Schlegel Jon McAuliffe Rollin Thomas Prabhat

*Department of Electrical Engineering and Computer Sciences, University of California, Berkeley †Parallel Computing Lab, Intel Corporation [‡]Julia Computing

Computer Science and AI Laboratories, Massachusetts Institute of Technology Department of Statistics, University of California, Berkeley Lawrence Berkeley National Laboratory

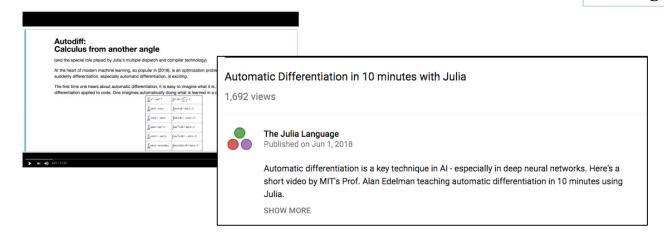


It just works (Part I)

importance of PCA or SVD in machine learning

All this time (specially in Netflix contest), I always come across this blog (or leaderboard forum) where they mention how by applying a simple SVD step on data helped them in reducing sparsity in data or in general improved the performance of their algorithm in hand. I am trying to think (since

"We can teach our autodiff system to differentiate the svd" vs "It just works because of built in abstractions in language design"



It just works (Part II)

Machine learning with operators (not dense matrices, not sparse matrices)

$$\begin{pmatrix} dx_{2} \\ dx_{3} \\ \vdots \\ dx_{N} \\ dx_{N+1} \end{pmatrix} = \begin{pmatrix} (x_{1}^{T} \otimes \Delta_{1}, \delta_{1}) \\ (x_{2}^{T} \otimes \Delta_{2}, \delta_{2}) \\ \vdots \\ (x_{N-1}^{T} \otimes \Delta_{N-1}, \delta_{N-1}) \\ (x_{N}^{T} \otimes \Delta_{N}, \delta_{N}) \end{pmatrix} \begin{pmatrix} (dW_{1}, db_{1})^{T} \\ (dW_{2}, db_{2})^{T} \\ \vdots \\ (dW_{N-1}, db_{N-1})^{T} \\ (dW_{N}, db_{N})^{T} \end{pmatrix}$$

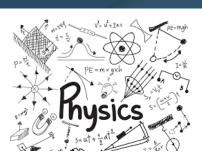
$$inplement$$

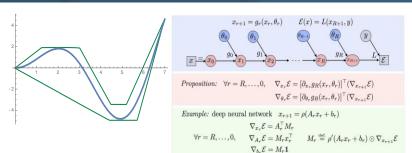
$$+ egin{pmatrix} 0 & \dots & 0 & 0 & 0 \ \Delta_2 W_2 & \dots & 0 & 0 & 0 \ & \ddots & & & & \ & \Delta_{N-1} W_{N-1} & 0 & 0 \ & & \Delta_N W_N & 0 \end{pmatrix} egin{pmatrix} dx_2 \ dx_3 \ dots \ dx_N \ dx_{N+1} \end{pmatrix}$$

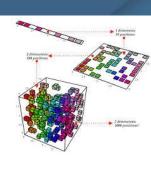
Build Operators solve with "backslash"

Not Blackboard → formula → implementation → debugging

Software Toolchain







Dim Re

Optimization Multiphysics (PDEs)

Adjoint Methods (Backprop/Autodiff)

Composability

plays nicely with others

Sensitivity Analysis

Confidence Intervals

The Power of Sensitivity

Performance Nimble/Agile

Jack Be Nimble Jack be nimble, 🤦 Jack be quick, Jack jump over the candlestick.

Machine Surrogat Learning

> Uncertainty Quantification

